AdSense

Thursday, September 15, 2016

Mitochondria -Mitochondrial DNA

Mitochondria are rod-shaped organelles that can be considered the power generators of the cell, converting oxygen and nutrients into adenosine triphosphate (ATP). ATP is the chemical energy "currency" of the cell that powers the cell's metabolic activities. This process is called aerobic respiration and is the reason animals breathe oxygen. Without mitochondria (singular, mitochondrion), higher animals would likely not exist because their cells would only be able to obtain energy from anaerobic respiration (in the absence of oxygen), a process much less efficient than aerobic respiration. In fact, mitochondria enable cells to produce 15 times more ATP than they could otherwise, and complex animals, like humans, need large amounts of energy in order to survive.

Mitochondria Structural Features
photo: micro.magnet.fsu.ed
The number of mitochondria present in a cell depends upon the metabolic requirements of that cell, and may range from a single large mitochondrion to thousands of the organelles. Mitochondria, which are found in nearly all eukaryotes, including plants, animals, fungi, and protists, are large enough to be observed with a light microscope and were first discovered in the 1800s. The name of the organelles was coined to reflect the way they looked to the first scientists to observe them, stemming from the Greek words for "thread" and "granule." For many years after their discovery, mitochondria were commonly believed to transmit hereditary information. It was not until the mid-1950s when a method for isolating the organelles intact was developed that the modern understanding of mitochondrial function was worked out.
The elaborate structure of a mitochondrion is very important to the functioning of the organelle (see Figure 1). Two specialized membranes encircle each mitochondrion present in a cell, dividing the organelle into a narrow intermembrane space and a much larger internal matrix, each of which contains highly specialized proteins. The outer membrane of a mitochondrion contains many channels formed by the protein porin and acts like a sieve, filtering out molecules that are too big. Similarly, the inner membrane, which is highly convoluted so that a large number of infoldings called cristae are formed, also allows only certain molecules to pass through it and is much more selective than the outer membrane. To make certain that only those materials essential to the matrix are allowed into it, the inner membrane utilizes a group of transport proteins that will only transport the correct molecules. Together, the various compartments of a mitochondrion are able to work in harmony to generate ATP in a complex multi-step process.
Mitochondria are generally oblong organelles, which range in size between 1 and 10 micrometers in length, and occur in numbers that directly correlate with the cell's level of metabolic activity. The organelles are quite flexible, however, and time-lapse studies of living cells have demonstrated that mitochondria change shape rapidly and move about in the cell almost constantly. Movements of the organelles appear to be linked in some way to the microtubules present in the cell, and are probably transported along the network with motor proteins. Consequently, mitochondria may be organized into lengthy traveling chains, packed tightly into relatively stable groups, or appear in many other formations based upon the particular needs of the cell and the characteristics of its microtubular network.
Animal Cell Mitochondria in the Microscope
micro.magnet.fsu.ed
Presented in Figure 2 is a digital image of the mitochondrial network found in the ovarian tissue from a mountain goat relative, known as the Himalayan Tahr, as seen through a fluorescence optical microscope. The extensive intertwined network is labeled with a synthetic dye named MitoTracker Red (red fluorescence) that localizes in the respiring mitochondria of living cells in culture. The rare twin nuclei in this cell were counterstained with a blue dye (cyan fluorescence) to denote their centralized location in relation to the mitochondrial network. Fluorescence microscopy is an important tool that scientists use to examine the structure and function of internal cellular organelles.
The mitochondrion is different from most other organelles because it has its own circular DNA (similar to the DNA of prokaryotes) and reproduces independently of the cell in which it is found; an apparent case of endosymbiosis. Scientists hypothesize that millions of years ago small, free-living prokaryotes were engulfed, but not consumed, by larger prokaryotes, perhaps because they were able to resist the digestive enzymes of the host organism. The two organisms developed a symbiotic relationship over time, the larger organism providing the smaller with ample nutrients and the smaller organism providing ATP molecules to the larger one. Eventually, according to this view, the larger organism developed into the eukaryotic cell and the smaller organism into the mitochondrion.
Mitochondrial DNA is localized to the matrix, which also contains a host of enzymes, as well as ribosomes for protein synthesis. Many of the critical metabolic steps of cellular respiration are catalyzed by enzymes that are able to diffuse through the mitochondrial matrix. The other proteins involved in respiration, including the enzyme that generates ATP, are embedded within the mitochondrial inner membrane. Infolding of the cristae dramatically increases the surface area available for hosting the enzymes responsible for cellular respiration.
Mitochondria are similar to plant chloroplasts in that both organelles are able to produce energy and metabolites that are required by the host cell. As discussed above, mitochondria are the sites of respiration, and generate chemical energy in the form of ATP by metabolizing sugars, fats, and other chemical fuels with the assistance of molecular oxygen. Chloroplasts, in contrast, are found only in plants and algae, and are the primary sites of photosynthesis. These organelles work in a different manner to convert energy from the sun into the biosynthesis of required organic nutrients using carbon dioxide and water. Like mitochondria, chloroplasts also contain their own DNA and are able to grow and reproduce independently within the cell.
In most animal species, mitochondria appear to be primarily inherited through the maternal lineage, though some recent evidence suggests that in rare instances mitochondria may also be inherited via a paternal route. Typically, a sperm carries mitochondria in its tail as an energy source for its long journey to the egg. When the sperm attaches to the egg during fertilization, the tail falls off. Consequently, the only mitochondria the new organism usually gets are from the egg its mother provided. 
Therefore, unlike nuclear DNA, mitochondrial DNA doesn't get shuffled every generation, so it is presumed to change at a slower rate, which is useful for the study of human evolution.

Mitochondrial DNA is also used in forensic science as a tool for identifying corpses or body parts, and has been implicated in a number of genetic diseases, such as Alzheimer's disease and diabetes.
credit/source: https://micro.magnet.fsu.edu/cells/mitochondria/mitochondria.html

Added Information and Article 

MITOCHONDRIA SRUCTURE
photo:hyperphysics.phy-astr.gsu.edu


Mitochondria are the energy factories of the cells. The energy currency for the work that animals must do is the energy-rich molecule adenosine triphosphate (ATP). The ATP is produced in the mitochondria using energy stored in food. Just as the chloroplasts in plants act as sugar factories for the supply of ordered molecules to the plant, the mitochondria in animals and plants act to produce the ordered ATP molecules as the energy supply for the processes of life.

A typical animal cell will have on the order of 1000 to 2000 mitochondria. So the cell will have a lot of structures that are capable of producing a high amount of available energy. This ATP production by the mitochondria is done by the process of respiration, which in essence is the use of oxygen in a process which generates energy. This is a very efficient process for using food energy to make ATP. One of the benefits of "aerobic exercise" is that it improves your body's ability to make ATP rapidly using the respiration process.
All living cells have mitochondria. Hair cells and outer skin cells are dead cells and no longer actively producing ATP, but all cells have the same structure. Some cells have more mitochondria than others. Your fat cells have many mitochondria because they store a lot of energy. Muscle cells have many mitochondria, which allows them to respond quickly to the need for doing work. Mitochondria occupy 15 to 20 percent of mammalian liver cells according to Karp.

credit/source: http://hyperphysics.phy-astr.gsu.edu/hbase/biology/mitochondria.html

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.